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Calculation of spin-dependent interface resistance
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A simple expression for the interface resistance between two materials has been derived by Schepet al. @J.
Magn. Magn. Mater.177, 1166~1998!# in terms of the transmission probability for electrons at the interface.
This approximation is tested for a simple model interface and good agreement is found with solutions of the
Boltzmann equation. Previously calculated values of the transmission probability are used with this simple
expression to evaluate the spin-dependent interface resistances of a number of ferromagnetic-normal metal
interfaces. The agreement between the calculated results and the results extracted from experiments on Cu/Co
argue that the interface resistance may not be dominated by defect scattering as is often assumed.
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Giant magnetoresistance1 is the change of resistance whe
the magnetic alignment of adjacent ferromagnetic lay
separated by nonmagnetic material is changed. The cas
which the current is perpendicular to the planes is referre
as current–perpendicular-to-plane giant magnetoresist
and has been reviewed by Bass and Pratt.2 The semiclassica
theory for this case has been developed by Valet and F3

In this limit, the interfaces are sufficiently separated th
quantum interference effects due to reflection from the in
faces can be neglected. If the interfaces are separate
more than a bulk mean free path, the theory shows that
total resistance can be broken into contributions from
bulk regions and to resistances associated with each in
face. The theory also shows how these interface resista
can be extracted from experiment. Generally, it is assum
that the interface resistance results from defects at the in
face~interfacial roughness! or interdiffused atoms. However
there is also an interface resistance for defect-free interfa
due to the nonzero reflection coefficients at the interface4

Schepet al.5 derived a simple form for the resistance of
single, defect-free interface between materials A and B.
derive this form from the linearized Boltzmann equation
the relaxation time approximation, they treat the bulk tra
port with an approximation based on random matrix theo
The form they derive is
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in terms of the areas of the Fermi surfaces~FS! projected in
the direction of the interface

Si5
1

~2p!2E
FSi

d2K, ~2!

for i 5A,B and the transmission probability integrated ov
the Fermi surface

Ttot5
1

~2p!2E
FSA

d2KTA←B~k!. ~3!

The wave vectork is on the Fermi surface of material B an
has a components perpendicular to the interfaceK , which is
the integration variable for the projection in the direction
PRB 610163-1829/2000/61~5!/3200~3!/$15.00
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the interface. The resistance of an interfaceR is inversely
proportional to the area of the interfaceA, so the productAR
is independent of the detailed geometry of the interface. T
definition of Ttot appears asymmetric because it only i
volves the transmission in one direction, but because of
croscopic reversibility,Ttot is the same for transmission i
either direction. Even though the existence of a meaning
interface resistance depends on there being enough bulk
tering to eliminate quantum interference effects, the interf
resistance in this approximation, Eq.~1!, is independent of
the details of the bulk scattering.

Schepet al. applied Eq.~1! to interfaces between Co an
Cu in the~111! and~110! directions. However, they were no
able to test its validity. In this paper, we test Eq.~1! in a
model system for which exact results are known, and th
apply it to a series of interfaces.

We test Eq.~1! by considering a model interface inserte
in an infinite free-electron material. A stacking fault wou
be an example of this type of interface. The transmiss
probability across this interface is modeled by a simple
pression in terms of two parameters. In a previous paper,6 we
described a method to numerically solve the lineariz
Boltzmann equation, and used that method to compute
interface resistance for this model interface as a function
the parameters that describe the transmission probab
Here we compare those ‘‘exact’’ solutions with approxima
solutions of the same model using Eq.~1!.

For a sheetliked-function potential inserted in a free
electron material, the transmission probability depends
the perpendicular component of the electron wave vectorkz
as

TA←B~k!5
kz

n

akF
n1kz

n
, ~4!

with exponentn52. The dimensionless parametera is pro-
portional to the square root of the strength of thed-function
potential. It determines the strength of the reflection. In R
6, we considered a generalized model for the transmiss
probability with n allowed to take on other values anda
parametrizing the strength of the reflection. These gene
zations are useful for testing the validity of various appro
mations, such as the approximation discussed in this pa
3200 ©2000 The American Physical Society
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The choicen51 is analytically soluble. For this choice, th
approximation of Schepet al., Eq. ~1!, gives

AR5F2a
3ph

kF
2e2G F 1

3aS 1

2
2a1a2 log

11a

a D 21

2
2

3aG .
~5!

The first factor in square brackets is the result obtained
solving the linearized Boltzmann equation in the relaxat
time approximation~analytically for this case!.7 The second
factor can be expanded in a Taylor series for small 1/a as

11
1

12a
2

3

80a2 1•••. ~6!

In the limit of large interface resistance, small 1/a, the result
becomes quite good. The exact result and the approxim
result are compared in Fig. 1. Also shown in that figure ar
comparison forn52 andn58 between numerical solution

FIG. 1. Interface resistances. For the model interface descr
around Eq.~4!, parametrized by the variablesn anda the solid lines
give the interface resistance from a numerical solution of the B
zmann equation and the dashed lines give the approximate re
based on Eq.~1!.
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of the Boltzmann equation6 and analytic solutions of Eq.~1!.
This figure shows that for high-resistance interfaces, the
proximation gives reasonable results. For low-resistance
terfaces, the absolute error decreases, but the relative
increases.

The approximation Eq.~1! is related to the relaxation time
approximation because the details of the bulk scattering
not enter into the interface resistance. As we showed in R
6, when the bulk scattering is treated without invoking t
relaxation time approximation, there are deviations of
about 10% in the interface resistance. We expect there t
similar deviations from Eq.~1! whenever the relaxation time
approximation breaks down.

In Table I, we use Eq.~1! and previously published result
for the transmission probability,12,13to compute values of the
spin-dependent interface resistance for a series of interfa
We report the resistivities for the minority and majority ele
trons,AR↓ andAR↑, respectively, and the combinations

g5
AR↓2AR↑

AR↓1AR↑ , ~7!

and

AR* 5
AR↓1AR↑

4
, ~8!

which are typically extracted from experiment. The resu
for Co/Cu~111! and Co/Cu~110! are in good agreement with
the results of Schepet al., which are based on the sam
model, but make use of independent calculations of
transmission probabilities. The transmission probabilit
were calculated on uniform grids in the interface Brillou
zone using from 61 to 157 points in the irreducible wedg
These correspond to on the order of 500 points in the
interface Brillouin zone. The uncertainty due to thek-space
integrations are smaller than the uncertainties due to the
of the approximation Eq.~1! and the local-density approxi
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TABLE I. Spin-dependent interface resistances. The relationships betweenR↓, R↑, g, andR* are given

in Eqs.~7!–~8!. The upper portion of the table is our theoretical results and the lower portion gives ex
mental results. The interface orientations are not known in the experimental systems.

AR↓ ( f V m2) AR↑ ( f V m2) g AR* ( f V m2)

Au/Fe~100! 11.39 1.06 0.83 3.11
Ag/Fe~100! 12.86 1.07 0.85 3.48
Cr/Fe~100! 0.77 2.87 20.58 0.91
Cr/Fe~112! 0.42 0.76 20.28 0.30
Cr/Fe~110! 0.81 2.11 20.44 0.73
Cu/Co~100! 2.31 0.31 0.76 0.65
Cu/Co~110! 2.54 0.55 0.64 0.77
Cu/Co~111! 1.95 0.43 0.64 0.60
Cu/Ni~100! 1.20 0.43 0.47 0.41
Cu/Ni~110! 1.52 1.08 0.17 0.65
Cu/Ni~111! 0.93 0.56 0.25 0.37

Co/Cu ~Ref. 8! 0.7760.04 0.5160.02
Co/Cu ~Ref. 9! 0.3–0.6 0.3–1.1
Co/Cu ~Ref. 10! 0.8560.1 0.360.05
Ni80Fe20/Cu ~Ref. 11! 0.8160.14 0.560.04
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mation. In the local-density approximation, there are syste
atic errors in the shape of the Fermi surface, which can l
to unknown errors in the interface resistance.

Some trends are clear from the results. The strong
asymmetries of any of the interfaces are for the Au/Fe
Ag/Fe interfaces. For these interfaces, the strong reflec
for the minority states arises in large part because the s
near the center of the interface Brillouin zone have very d
ferent symmetries for the two materials. The interfaces t
have the lowest symmetry, fcc~110! and bcc~112!, tend to
have the lowest asymmetries. The asymmetries are pos
for all combinations except for Fe/Cr, where the Fermi s
face of paramagnetic Cr is very similar to the minority Fer
surface of Fe, leading to weak reflection for those spins.

The experimental results in Table I are from measu
ments on polycrystalline samples with little information o
the interface quality. The layer thicknesses are large eno
that quantum interference effects can be neglected. By
lyzing the dependence of the resistance on the thickness
the different layers, the bulk resistivities and the sp
dependent interfaces resistances can be extracted. It cou
that the measured interface resistance is caused by refle
from the interface, as is assumed in the present model,
could be caused by diffuse scattering at the interface.
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experimental values for Co/Cu are close to the theoret
values for the~111! interface, which is believed to be th
predominant orientation for polycrystalline samples. Ac
ally, the results for Co/Cu are not very sensitive to interfa
orientation. This agreement is at least consistent with an
portant contribution from the interface reflection. Howev
the presence of both reflection and diffuse scattering can
fect the interface resistance in a complicated way.14 The
magnitude of the interface resistance for Ni80Fe20/Cu is
close to the theoretical results for Ni, but the asymmetryg is
quite a bit higher than the theoretical results in Table I. T
discrepancy might occur because Ni80Fe20 is sufficiently dif-
ferent from Ni or because the interfaces are significan
more disordered.

In summary, we have shown that the simple approxim
tion for interface resistance derived by Schepet al. works
reasonably well for certain model interfaces. We have a
shown that the interface resistances calculated using this
proximation and transmission probabilities computed fro
first principles give reasonably good agreement with int
face resistances determined experimentally. This agreem
indicates that the measured interface resistances might n
dominated by defect scattering as is often assumed.
F.
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